AN IMPROVED PREPARATION OF SUBSTITUTED PHOSPHORYL DIFLUORIDES. SYNTHESIS OF TRIFLUOROMETHYLTHIODIFLUOROPHOSPHINE AND TRIFLUOROMETHYLTHIOPHOSPHORYL DIFLUORIDE

GEORGE H. SPRENGER AND JEAN'NE M. SHREEVE Department of Chemistry, University of Idaho, Moscow, Idaho 83843 (U.S.A.) (Received August 18, 1973)

SUMMARY

Difluorobromophosphine reacts readily with bis(trifluoromethylthio)mercury to yield the fluorophosphine CF_3SPF_2 in excellent yields. The resulting new phosphine is readily oxidized under very moderate conditions by ClF, Cl₂ and O₂ to give new chlorofluorophosphorane and fluorophosphoryl compounds which contain the CF₃S moiety. $CF_3SPF_2Cl_2$ and CF_3SPF_3Cl were not characterized because of their tendency to disproportionate. $CF_3SP(O)F_2$ has, however, been isolated and characterized. All the new compounds are relatively unstable and decompose with a fluoride shift from the methyl group to the phosphorus atom. A new synthetic route to the known difluorophosphoryl compounds OPF_2Cl , OPF_2Br , OPF_2NCS and $OPF_2(CH_3)_2$, by the direct oxidation of the respective difluorophosphine with oxygen, has been found.

INTRODUCTION

Utilization of a dialkylaminophosphorus difluoride compound in reaction with strong, non-oxidizing acids provides a powerful, high-yield route to substituted difluorophosphines¹. However, application of this technique to the synthesis of difluorophosphoryl compounds by first forming $R_2NP(O)F_2$ from OPF₃ does not result in high yields of OPF₂X compounds². In this work, we have found that essentially quantitative yields of OPF₂X compounds result when the corresponding difluorophosphine is reacted with elemental oxygen.

Many compounds which contain phosphorus and the trifluoromethylthio moiety are known³⁻⁵ but none is known which contains both CF_3S and F bonded to phosphorus. We have now been able to prepare and characterize CF_3SPF_2 from

the reaction of PF_2Br and $(CF_3S)_2Hg$, and $CF_3SP(O)F_2$ by the direct oxidation of CF_3SPF_2 with molecular oxygen. A single chlorine could be replaced by CF_3S from PF_2Cl_3 or PF_3Cl_2 in reaction with the mercurial but the products were not sufficiently stable to permit complete characterization.

DISCUSSION

Although there are 14 possible combinations of CF₃S and F with P^{III}, P^V and OP^V, prior to this work only $(CF_3S)_3P$ was known³⁻⁵. We now have succeeded in preparing the moderately stable compounds CF₃SPF₂ and CF₃SP(O)F₂.

The reaction of HCl with CF₃SPF₂ results in the severance of the phosphorussulfur bond to give CF₃SH and PF₂Cl. This fact precludes the utilization of a very attractive route to compounds of this type, namely the action of CF₃SCl on PF₂H, since the latter is not sufficiently basic to remove the product HCl as occurs in the case of PH₃⁵. Since earlier workers⁴ successfully prepared (CF₃S)_nPCl_{3-n} (n = 1, 2, 3) from (CF₃S)₂Hg and PCl₃, we were prompted to use the mercurial as a ready source of the CF₃S group. Excellent yields of CF₃SPF₂ result from the reaction of (CF₃S)₂Hg and PF₂Br, and, in addition, with PF₃Cl₂ and PF₂Cl₃ the somewhat unstable materials CF₃SPF₃Cl and CF₃SPF₂Cl₂ are obtained. Unsuccessful attempts were made to substitute the CF₃S moiety for bromine or chlorine in PF₂Cl, OPF₂Cl, OPF₂Br, SPF₂Cl, PBr₅ and PF₄Cl.

While pure CF₃SPF₂ in clean Pyrex glass at 25 °C and in diffuse light is stable for at least 6 h, it decomposes rapidly in the presence of unreacted starting materials or other impurities. Decomposition apparently proceeds *via* a fluorideion shift which breaks a carbon-fluorine bond in CF₃ to form a phosphorusfluorine bond; *i.e.*, 2CF₃SPF₂ \rightarrow (CF₂S)₂ + 2PF₃. It was of interest to compare this reaction with that of the nitrogen analogue, CF₃SNF₂, which decomposes at 25 °C in a 30% CCl₄ solution to give a variety of products including SF₅NF₂, CF₄, SOF₂, SO₂ and SiF₄⁶. Unfortunately, no data are available on the decomposition of the pure material.

Substituted organic phosphines are oxidized readily to phosphoryl or thiophosphoryl compounds with elemental oxygen or sulfur⁷. CF₃SPF₂ is also converted readily and in high yield to CF₃SP(O)F₂ with oxygen under mild conditions. The analogous oxidation of $(CF_3S)_3P$ has been attempted under conditions that varied from 14 days at 25 °C with no resultant reaction to 3 h at 90 °C when OPF₃, SO₂, $(CF_2S)_2$ and other unidentified phosphorus(III) fluorides were recovered. Attempts to oxidize CF₃SPF₂ with sulfur at a variety of temperatures, with or without solvents, only gave rise to decomposition products.

After 24 h at 25 °C, CF_3SPF_2 and CF_3SCI react completely to give mainly CF_3SSCF_3 and PF_2CI accompanied by traces of $(CF_2S)_2$ and PF_3 . With excess ammonia, CF_3SPF_2 gives an involatile liquid, probably $CF_3SP(NH_2)_2$, whose mass

spectrum contains a molecule ion at 164 and other fragments which support the diamine structure.

Both CF₃SPF₂ and CF₃SP(O)F₂ are hydrolyzed rapidly by water. Large quantities of PF₃ and CF₃SH, accompanied by traces of CF₃SSCF₃, SiF₄ and traces of fluorophosphoric acids, are obtained when CF₃SPF₂ is hydrolyzed, while CF₃SP(O)F₂ upon hydrolysis gives mainly CF₃SSCF₃ and involatile fluorophosphoric acids. Small amounts of OPF₃ and CF₃SH were also observed in the latter reaction. Hydrogen chloride attacks CF₃SP(O)F₂ to form CF₃SH and OPClF₂.

The low-temperature oxidation of difluorophosphines resulted in high yields of substituted phosphoryl difluorides. This method appears to be superior to that in the literature².

EXPERIMENTAL

General methods

A standard Pyrex high-vacuum system equipped with a Heise–Bourdon tube gauge was used in all reactions. Purification of starting materials and products was accomplished by fractional condensation. Infrared spectra were obtained on a Perkin–Elmer Model 457 spectrometer using a 10 cm Pyrex gas cell fitted with sodium chloride or potassium bromide discs depending on the corrosiveness of the sample. ¹⁹F NMR spectra were obtained using a Varian HA-100 spectrometer at 94.1 MHz with trichlorofluoromethane as an internal reference. ³¹P NMR spectra were obtained using a Varian HA-100 spectrometer at 40.5 MHz with 85% phosphoric acid as an external reference. A Hitachi–Perkin–Elmer RMU-6E spectrometer operated at an ionization potential of either 70 or 17 eV was used to obtain mass spectra. Molecular weight determinations were obtained by the method of Regnault. Compounds were fused with excess sodium metal and their fluorine content determined with a fluoride-ion electrode. Sulfur was determined by oxidizing the sulfide ion to sulfate ion with hydrogen peroxide and precipitating as BaSO₄.

Materials

Commercially available reagents were purchased from the following sources: PF₃, OPF₃ and ClF from Ozark-Mahoning Co.; CF₃SSCF₃ and CF₃SCl from PCR, Inc.; HBr, HCl and (CH₃)₂NH from the Matheson Co. PF₂Cl, PF₂Br, SPF₂Cl and SPF₂Br were synthesized *via* literature methods². PF₃Cl₂, PF₃Br₂, PF₂Cl₃ and PF₄Cl⁸ resulted from the direct oxidation of PF₃ or PF₂Cl with the halogen or ClF. ClF was freed from any ClF₃ by holding the mixture at -130 °C and removing the more volatile ClF under dynamic vacuum. (CF₃S)₂Hg was obtained from the photolysis of CF₃SSCF₃ in the presence of mercury⁹. Photolysis of a mixture of CF₃SSCF₃ and H₂S gave essentially quantitative yields of CF₃SH¹⁰.

Preparation of CF₃SPF₂

Freshly-prepared (CF₃S)₂Hg (8 g, 20 mmol) was sublimed into a 500 cm³ Pyrex glass vessel and 9 mmol of PF₂Br added. The mixture was allowed to remain at 25 °C except for the periodic condensation of the PF₂Br on to the surface of the mercurial followed by warming to 25 °C. Total reaction time was 6–8 h. The yield of CF₃SPF₂ was 8.7 mmol.

If the mercurial was not freshly sublimed or had been transferred in the air, the yield of CF₃SPF₂ was reduced and was accompanied by large amounts of PF₃, OPF₃ and (CSF₂)₂ and minor amounts of CF₃SH and CF₃SSCF₃. Elemental analysis gave F, 56.34% and S, 17.30% (calc. 55.88 and 18.82 respectively). The experimental molecular weight was 168 (calc. 170). A molecular ion, CF₃SPF₂⁺, at 170 was observed in the mass spectrum. Bands in the infrared spectrum were 1228 (w), 1182 (s), 1170 (s), 1117 (s), 850 (s), 760 (m), 571 (m) and 502 (m), cm⁻¹. Nuclear magnetic resonance data included ¹⁹F chemical shifts for CF₃ at φ 29.3 and PF at φ 69.2, and a ³¹P chemical shift at -215 MHz. Spin-spin coupling constants are $J(CF_3-PF) = 5.1$ Hz, $J(CF_3-P) = 26.7$ Hz and J(PF-P) = 1302 Hz. CF₃SPF₂ boils at 3.9 °C, with $\Delta H_v = 5.8$ kcal mol⁻¹ and $\Delta S_v = 21$ cal K⁻¹ mol⁻¹ and obeys the equation log p(Torr) = 7.086 - 1164.2/T.

Preparation of $CF_3SP(O)F_2$

Pure CF₃SPF₂ (3.0 mmol) was condensed into a 500 cm³ Pyrex glass vessel that was completely immersed in a bath at -78 °C. Pure dry oxygen was introduced into the vessel to a pressure of 1 atm. After 12 h at -78 °C, the volatile materials which consisted of O₂, PF₃ and OPF₃ were removed under dynamic vacuum. CF₃SP(O)F₂ (2.8 mmol, 93%), slightly contaminated with CF₃SSCF₃, remained in the vessel. Trap-to-trap separation through a trap at -63 °C retained the pure $CF_3SP(O)F_2$. Elemental analysis gave F, 50.67% and S, 16.78% (calc. 51.08 and 17.20 respectively). The experimental molecular weight was 183 (calc. 186). A molecular ion, CF₃SP(O)F₂⁺, at 186 was observed in the mass spectrum. Bands in the infrared spectrum were 1375 (s), 1350 (w, sh), 1310 (w), 1200 (s), 1115 (s), 945 (s), 887 (s), 763 (m), 602 (s) and 550 (m), cm⁻¹. Nuclear magnetic resonance data included ¹⁹F chemical shifts for CF₃ at φ 31.9 and PF at φ 41.2, and a ³¹P chemical shift at -0.8 MHz. Spin-spin coupling constants are $J(CF_3-PF) = 7.9$ Hz, $J(CF_3-P) = 11.5$ Hz and J(PF-P) = 1296 Hz. $CF_3SP(O)F_2$ boils at 27.3 °C with $\Delta H_v = 5.5$ kcal mol⁻¹ and $\Delta S_v = 18.3$ cal K⁻¹ mol⁻¹ and obeys the equation $\log p(\text{Torr}) = 6.902 - 1207.4/T.$

Preparation of OPF_2X

This method is equally applicable for the preparation of phosphoryl compounds where X = Cl, Br, NCS and N(CH₃)₂. Typically, 3.4 mmol of PF₂Br were reacted with an excess of pure dry oxygen at -78 °C for 12 h. Good yields (3.2 mmol) of OPF₂Br were isolated. The conditions for the conversion of other PF₂X compounds include: PF₂Cl at -50 °C for 12 h yielded 100% OPF₂Cl; PF₂NCS at 25 °C for 1 h yielded 80% OPF₂NCS; PF₂N(CH₃)₂ at 60 °C for 12 h yielded 100% OPF₂N(CH₃)₂; and PF₂NCO at 150 °C for 6 h resulted in no reaction. The products were identified by their infrared spectra.

Reaction of PF_3Cl_2 or PF_2Cl_3 with $(CF_3S)_2Hg$

When 2 mmol of either PF_3Cl_2 or PF_2Cl_3 was allowed to react with an excess of $(CF_3S)_2Hg$, a single chlorine was replaced to form the unstable new compound which is probably CF_3SPF_3Cl or $CF_3SPF_2Cl_2$. Based on a comparison of infrared data, the same compounds were formed by the oxidation of CF_3SPF_2 with ClF at -98 °C or with Cl_2 (free from HCl) at -78 °C. Both CF_3SPF_3Cl and $CF_3SPF_2Cl_2$ are relatively unstable with respect to $(CSF_2)_2$ and PF_4Cl or PF_3Cl_2 . Better yields of both compounds were obtained from reactions involving mercurials.

Reactions of $(CF_3S)_2Hg$ with other phosphorus compounds

Attempted mercurial reactions with PF_2Cl , POF_2Cl , OPF_2Br , SPF_2Cl , PBr_5 and PF_4Cl gave only starting materials or disproportionation products of the respective phosphorus halides at 25 °C.

ACKNOWLEDGEMENTS

Fluorine research at the University of Idaho is supported by the Office of Naval Research and the National Science Foundation. We thank R. A. De Marco for mass spectra and D. T. Sauer for nuclear magnetic resonance spectra. J. M. Shreeve was an Alfred P. Sloan Foundation Fellow, 1970–1972.

REFERENCES

- 1 R. G. CAVELL, J. Chem. Soc., (1962) 1992.
- 2 R. G. CAVELL, Can. J. Chem., 45 (1967) 1309.
- 3 S. N. NABI AND H. J. EMELÉUS, J. Chem. Soc., (1960) 1103.
- 4 H. PUGH AND H. J. EMELÉUS, J. Chem. Soc., (1960) 1108.
- 5 S. N. NABI AND N. SHEPPARD, J. Chem. Soc., (1959) 3439.
- 6 E. C. STUMP, JR. AND C. D. PADGETT, Inorg. Chem., 3 (1964) 610.
- 7 E. N. TSVETKOV, D. I. LOBANOV AND M. I. KABACHNIK, J. Gen. Chem. (USSR), 38 (1968) 2211.
- 8 W. B. FOX, D. E. YOUNG, R. FOESTER AND K. COHN, Inorg. Nucl. Chem. Lett., 7 (1971) 861.
- 9 G. R. A. BRANDT, R. N. HAZELDINE AND H. J. EMELÉUS, J. Chem. Soc., (1952) 2198.
- 10 N. R. ZACK, University of Idaho, private communication.